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Abstract—Publishers are increasingly using graphical ab-
stracts to facilitate scientific search, especially across disci-
plinary boundaries. They are presented on various media,
easily shared and information rich. However, very small
amount of scientific publications are equipped with graphical
abstracts. What can we do with the vast majority of papers
with no selected graphical abstract? In this paper, we first
hypothesize that scientific papers actually include a ”central
figure” that serve as a graphical abstract. These figures convey
the key results and provide a visual identity for the paper.
Using survey data collected from 6,263 authors regarding
8,353 papers over 15 years, we find that over 87% of papers
are considered to contain a central figure, and that these
central figures are primarily used to summarize important
results, explain the key methods, or provide additional discus-
sion. We then train a model to automatically recognize the
central figure, achieving top-3 accuracy of 78% and exact
match accuracy of 34%. We find that the primary boost
in accuracy comes from figure captions that resemble the
abstract. We make all our data and results publicly available at
https://github.com/viziometrics/centraul figure. Our goal is to
automate central figure identification to improve search engine
performance and to help scientists connect ideas across the
literature.
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I. INTRODUCTION

The graphical abstract (GA), a visual summary of a
scholarly article’s main findings, is an emerging concept
in scientific publishing. Elsevier, the largest publisher1 of
scholarly articles, requests that authors provide GAs and use
them for online search results in facilitating the discovery
process. With no specific guidance or requirements provided
to authors, 68% and 65% of papers accepted in two of the
top computer vision conferences (International Conference
on Computer Vision (ICCV) and Conference on Computer
Vision and Pattern Recognition (CVPR)) include ”teaser
figures,” a form of GA. 350% increase of graphical abstracts
use in social sciences from 2011 to 2015 is demonstrated
by Yoon et al. [1]. The significant increase of the use of
GA can be related to human’s superior ability of perceiving
visual materials. It is believed that the human’s highly
developed visual cortex [2] contributes to better perception
of visual information than textual information [3]. As a

1Elsevier is not the only publisher requiring GAs. Other large publishers
are also requiring GAs, including Wiley-Blackwell.

result, visualizations play a significant role in scientific
communication. With the abundance of scientific papers,
GAs complement conventional text abstracts to help users
quickly identify papers relating to their interests [1], [4].

Elsevier submission guidelines 2 describe a graphical
abstract as a ”single, concise, pictorial and visual summary
of the main findings of the article” that should ”allow readers
to quickly gain an understanding of the main take-home
message of the paper” and ”encourage browsing, promote
interdisciplinary scholarship, and help readers identify more
quickly which papers are most relevant to their research
interests” which could be a ”concluding figure from the
article or a figure that is specially designed for the purpose,
which captures the content of the article for readers at a
single glance.”. Since not all publishing venues request a
GA at the time of submission and not all authors elect to
provide one, services that make use of graphical abstracts
only apply to a small fraction of the scientific literature [1].

In this paper, we consider the automatic selection of a
”central figure” (CF) that can be used as a graphical abstract
to visually summarize the paper’s objectives, results, or
methods, afford fast assessment of relevance, and provide
a basis for new search services. This framing assumes
that these CFs actually exist. To test this hypothesis, we
issued 488,590 survey invitations to authors of papers on
PubMed Central, asking them to identify the CF of their
own publications, or indicate if no CF exists (see Figure 1).
We also asked authors to explain the information represented
in the figure to understand what role it plays. Figure 1 shows
the survey interface. We received responses from 6,263
distinct authors across 8,353 papers. Author respondents
identified a central figure for 87.6% of the papers.

Next, we use the survey responses to train a model to
predict the CF in a paper. Existing GAs and teaser images
are unsuitable as training data due to selection biases toward
particular domains (typically visually oriented fields such as
computer vision, graphics, and visualization) and because
many such figures are created specifically for the purpose.
We use the term central figure (CF) in this paper to distin-
guish from GAs. In response to publisher request, authors
create GAs at the time of submission. CFs are selected from
existing figures after the paper has been published. A CF

2https://www.elsevier.com/authors/journal-authors/graphical-abstract



may be suitable as a GA, and a GA may be identified as
the central figure of a paper, but the two terms are not
necessarily equivalent.

Using the results of our survey as training labels, we
extract features from the figures relating to figure content,
the surrounding text, and the overall paper layout. We use
these features in two different models: a figure-level model
that considers only one figure and its associated context at
a time, and a paper-level model that considers the set of
figures in a paper simultaneously. The paper-level model
with features from figure content combined with the sur-
rounding text and the overall paper layout produces the best
CF identification performance. We achieve top-3 accuracy of
77.9% and exact match accuracy of 33.6% for identifying
CFs with our features and model. The model outperforms
heuristic baselines of selecting the first figure in the paper
(25.8%), the last figure in the paper (26.9%), and uniform
random selection (26.4%). We find that the section title in
which the figure appears and the text similarity between the
abstract, the caption, and the inline reference of the figure
are predictive of the CF, suggesting that authors consider
these concepts in the design of their papers.

We make the following contributions:
• We conduct a large-scale survey to determine the preva-

lence and nature of the ”central figure” of a paper, with
6,263 distinct authors describing 8,353 papers.

• We combine features extracted from surrounding text,
figure type, and overall paper layout and further pro-
pose image-level model and paper-level for automated
identifying CF in scientific literature. The paper-level
model with all features included achieves top-3 accu-
racy of 77.9% and exact match accuracy of 33.6%.

• We conduct ablation studies to measure the influence
of individual features to provide information for au-
thors and publishers in each features. The experimental
results show that the similarity between image de-
scription, including captions and the inline reference
paragraph of images, and abstract is significant in
identifying central figures in scientific documents.

II. RELATED WORK

Yoon et al. [1] investigated the frequency of graphical
abstracts and the type of graphical abstracts that are adopted
in social science disciplines. Hullman [4] studied the design
pattern of graphical abstracts. However, only a small collec-
tion of articles were examined in both studies ( 772 and 54,
respectively) and both studies focused on analyzing existing
GAs instead of creating tools to identify GAs.

Other studies have focused on automated tools to create
a representation that summarizes scientific articles have also
been considered. Strobelt et al. describe DocumentCards [5],
a system to extract textual and visual content from a scien-
tific literature and produce a high level representation. Their

approach relies on simple rules to create the visual summary
and can not be customized for different papers.

A number of studies have focused on the mining of
scientific figures. Chart classification was studied by Shao et
al. [6] and Lee et al. [7]. Recent studies have been focusing
on extraction of quantitative data from scientific visualiza-
tions, including line charts [8], bar charts [9], and tables
[10]. Researchers have also investigated the techniques to
understand the semantic messages of the scientific figures.
Kembhavi et al. [11] utilized a convolution neural network
(CNN) to study the problem of diagram interpretation and
reasoning. Elzer et al. [12] studied the intended messages
in bar charts. Besides, several visualization-based search
engines have been presented. DiagramFlyer [13], introduced
by Chen et al., is a search engine for data-driven diagrams.
VizioMetrics.org[14] and NOA[15] are both scientific figure
search engines, yet they both work primarily by examining
the captions around the figures rather than specific features
in the images.

III. DATA
This study was conducted using scientific papers from

PubMed Central (PMC), an archive of biomedical and life
science literature.

IV. CENTRAL FIGURE SURVEY
To obtain the labeled data for CF, we launched a large-

scale survey asking authors to identify CFs in their papers.
We extracted email addresses from the XML files provided
by PMC API and sent out 488,590 survey invitations.

Authors are asked to answer two questions for each paper:
• Click on one of the images to select ONE figure that

you could call the ”graphical summary” of the paper,
if one exists. A figure that summarizes the key aspects
of the article for readers at a single glance.

• What does the figure you selected represent?
For the first question, we used the descriptive term ”graph-
ical summary” rather than central figure to indicate our
intention. Authors can select from among all the figures
in the paper or select ”No such figure.” The latter option
allows us to validate whether or not the CF is a recognizable
concept in the current scientific literature. For the second
question, authors may select from five options: ”Results”,
”Discussion”, ”Model”, ”Methods”, and ”Other”.

A. Survey Results
As of December 1st, 2018, we had collected data on 8,353

distinct papers, from 6,263 distinct authors. Some authors
provided responses for more than one of their papers, and
some papers generated responses from more than one of its
authors. The publishing time distribution is shown in Figure
2. 74.0% of evaluated papers are published after 2010. Only
12.4% (1,036) of the evaluated paper were indicated not to
have a figure that satisfies our definition of CF (890) or for



Figure 1: Snapshot of the survey. We asked authors of PubMed papers to identify the central figure of their own publications
using this interface. Authors were asked to select a figure, if it exists, that summarizes the key aspects of the article, or
choose ”No such figure”. We also asked authors to provide what kind of information the selected figure represents for the
article from five options, which are ”Results”, ”Discussion”, ”Model”, ”Methods”, and ”Other”.

which multiple authors selected different figures (146). For
the remaining 87.6% of the papers, the authors identified a
single CF, suggesting acceptance of the concept.

Figure 2: The publishing time distribution of evaluated
papers. 74.0% of evaluated papers are published after 2010.

B. Analysis of Objectives of Central Figure

Figure 3(a) illustrates the purpose of the central figure.
In 67.0% of the papers, the central figure represents results,
corroborating Yoon et al. who found that graphical abstracts
are most frequently used to present results [1]. This use of
the central figure affords an interpretation that a paper is
a delivery vehicle for one main result, which supports the
idea toward a results-oriented publishing model, where the
unit of publishing is a scientific workflow [16], [17] or a
nano-publication [18]. Methods and model were the next
most popular categories at 13.6% and 12.2%. Discussion is
responsible for only 5.1% of central figures. In 2.1% of the
papers the authors indicated the content as Other.

(a) (b)

Figure 3: (a) Author-indicated objective of the central fig-
ures. The survey results reveal that the most of the central
figures are used to represent scientific results. (b) Pie chart
of figure type distribution of central figures. 51.9% of central
figures are diagrams.

C. Analysis of Figure Content of Central Figure

After collecting the survey results, the next step is to
analyze the content within the figures. Using the class
assignments compiled by Lee et al. [19] and classifier
approach described by Lee et al. [7], we train a classifier to
identify different figure types. The training dataset, including
1871 equations, 3347 photos, 2849 diagrams, 2193 tables
and 4680 plots, is split into training set, validation set, and
test set with 8:1:1 ratio. We finetune a pre-trained ResNet-
50 [20] and obtain similar model performance reported by
Lee et al. [7]. We label the central figure as one of five
figure types. The totals are shown in Figure 3(b). 51.9%
of the central figures in the evaluated papers are diagrams,
which agrees with the findings of Yoon et al. [1] that most
GAs are diagrams. We found that despite the fact that plots
(graphs) and tables can both be used for presenting data,



plots are much more popular when it comes to presenting
key information. This result agrees with Cleveland et al.
[21], who showed that fractional graph area (FGA) increases
as one moves from social to mathematical and then to natural
science. This finding also agrees with results from Smith et
al. [22] that suggest that technical fields of science tend
to use more graph-oriented figures than table-oriented. The
fact that equations are rarely found among central figures is
consistent with findings by Fawcett and Higginson [23].

V. MODEL CENTRAL FIGURES
The next task is to train a model to select the CF from all

figures in a paper. We consider three sources for identifying
the CF: (1) the content of the image, (2) the text describing
the image (and as it relates to the abstract), and (3) the
location of the figure in the paper. We will elaborate on
each source in the following subsections.

A. Image Content
The content of the image itself is not a good predictor

of centrality, as we will show, since many figures in a
paper look alike and our training set is limited. However,
we find it useful to consider the broad type of the image as
a feature. We classify each image into one of five categories,
diagram, plot, table, equation, and photo, using the classifier
developed by Lee et al. [19]. We label all the figures in the
datasets by running the figure type classifier mentioned in
Section IV-C. This categorical feature is encoded in a 5-d
one hot vector to represent the visual content of the figure.

B. Text Features
Each figure is described in both a caption and in one

or more inline references in the body of the paper. While
both sources of text can be used as features alone, we
also consider the similarity of these excerpts to the abstract
as an indicator that the text serves as a summary of the
overall paper. We will first explain the process of extracting
surrounding text of a figure from the paper and then describe
the similarity measures.

Text Extraction: We collect captions of the figures from
PubMed. To extract inline references in the body of the
paper, we use Science Parse 3 to parse the papers in pdf
format provided by PubMed and obtain the full text in
structural form. We then search the pattern that consist
of words, including Figure, Fig, and Table, followed by a
number using regular expression. We select the paragraph
blocks contain the inline references in between two break
line (\n) characters. Finally, we match the index between
the inline references and the captions of the figures.

Similarity Between Caption and Abstract: An abstract
is a summary of the paper’s results. High similarity between
a figure’s caption and the paper’s abstract would therefore
indicate that the figure plays a potential summarizing role

3https://github.com/allenai/science-parse

as well. We experiment with three different similarity mea-
sures: (1) TF-IDF, (2) Elmo-avg and (3) Elmo-DynaMax.

• TF-IDF + Cosine Similarity: We preprocess the cap-
tions, the inline references and abstracts from training
set by tokenizing the documents and removing the
stop words. We pick the most frequent 1,024 words to
construct TF-IDF weights and the weights are acquired
from the preprocessed training set. The dimensionality
is picked to match with the competitive similarity
measures. For each image, we apply the weights to the
concatenation of the caption and the inline reference.
Every abstract is also embedded in the TF-IDF vector.
We finally compute the cosine similarity between the
two vectors. We will refer this similarity measure as
TF-IDF for simplicity.

• Elmo-avg [24]: Elmo is one of the state-of-the-art
contextualized word embedding models. The word rep-
resentations are functions of the internal states of a
bidirectional language model. Elmo has been trained in
large-scale scientific documents from PubMed, making
Elmo a natural candidate for our task. The contextu-
alized word representation is obtained from the top
layer of the pre-trained Elmo model, and we average
the word representations to acquire the representation
vector for both the image descriptions and abstract.
The cosine similarity is computed between the averaged
word vectors of image descriptions and abstract.

• Elmo-DynaMax [24] [25]: Zhelezniak proposed a
similarity measure, DynaMax, that dynamically ex-
tracts max-pool features based on the sentence pair.
This method outperforms current baselines on several
tasks [25]. The DynaMax similarity is computed be-
tween the image descriptions and the paper’s abstracts
from Elmo word vectors.

C. Layout
We produced two numerical features and one categorical

feature from image position: (1) normalized section index,
(2) image order, and (3) section heading:

• Normalized section index: Normalized section index
is used to represent the position of the image within
the layout of the paper. For example, in a paper with
sections ”Introduction,” ”Methods,” and ”Results,” the
corresponding sequentially increasing section identi-
fiers would be 0, 1, and 2. The normalized version of
the identifiers would be its original value divided by
the maximum identifier value.

• Image Order: The sequentially increasing numerical
identifier for an image based on its order of occurrence
in a paper.

• Section Heading: The survey shows 67% of the cases
with central figures are used to represent results. To
capture this feature, we constructed unigram represen-
tations of the section headings of papers in our dataset



for both the entire headings and their distinct words. We
then transformed the top ten frequently occurring words
in the section headings unigram model in to ten unique
boolean classification features, each denoting ”1” for
whether the corresponding word occurred in a given
section heading, and ”0” otherwise.

VI. MODELS

In this section, we illustrate two different models to
identify central figures.

A. Figure-level Model

This approach attempts to predict whether an individual
figure is a central figure without considering the other figures
in the paper. Let X = {xi : i} be the features of the
images and each image corresponds to a label yi, where
yi 2 {�1, 1}. central figures are labeled as 1 and non-
central figures are labeled as -1. We learn a mapping function
f : X ! Y using machine learning techniques, which
include logistic regression, random forest, gradient boosting,
support vector machine (SVM), and neural networks.

To pick the central figure from a paper A = {aj : j}, we
select the figure with highest probability predicted by each
classifier f : Cj = argmaxxi2Aj

(P (f(xi) = 1))

B. Paper-level Model

This approach predicts the position of the central figure
given all figures in a paper. For example, if a paper has
10 figures, we concatenate all 10 feature vectors, and then
predict an integer 0..9 to indicate which figure is the central
figure. Let V = {vj : j} represent a feature vector for each
paper. vj is a n x d vector where n is a parameter and d is the
dimension of image feature. Since there are variable number
of figures in different papers and basic machine learning
models only take fixed dimension inputs, we introduce a
hyperparameter n to serve as the threshold for the number
of figures. We pad zero if the number of figure is smaller
than n in a paper. For the case where the number of figure
is larger than n, we select n figures whose captions are most
similar to the abstract based on our TF-IDF model to fill vj .
The classifiers f will learn a mapping function f : V ! I ,
where I 2 {0, 1, ..., n} is the index of the central figure. We
experiment on the ensemble and regression learning methods
plus neural networks listed in previous sub section.

VII. EXPERIMENTS

In this section, we first define evaluation metrics on our
task. Next, we explain the implementation details of our
models. Baseline models are next introduced as compar-
isons. Finally, quantitative results of our image-based model
and paper-based model are presented.

A. Evaluation Metrics
The image accuracy is applied to evaluate the image based

model. The image accuracy is defined as:

imageACC =
True Positive + True Negative

Total number of the images
(1)

We use two metrics, ACC and ACC@3, to evaluate the
overall capability of selecting central figure from a paper.

ACC =
Nc

Nt
(2)

where Nc is the number of the papers with correct central
figure prediction and Nt is the total number of the papers.

ACC@3 =
Nc@3

Nt
(3)

where Nc is the number of the papers with the correct
central figure prediction, within the 3 figures with highest
probability. Nt is the total number of papers.

B. Implementation Details
We remove the evaluated papers which do not have central

figures and split the data into training, validation, and test
set with 8:1:1 ratio. We run our experiments on the training
and validation set. The final model is trained by the data
from both training set and validation set and accuracy results
reported below are conducted on test set.

Regression and ensemble models are trained using Scikit-
learn and we use default values for hyperparameters. The
neural network model include three fully connected layers
with dimensions 100-100-n. Drop out layers with drop out
rate 0.2 are inserted between the fully connected layers. All
the models are trained with learning rate 0.01 and 0.01 decay
for 100 epochs.

C. Baseline Models
We introduce three naive baseline models as comparisons.
• Pick First: First image is selected as prediction in this

model. We pick first three images in the paper as top
three guesses for ACC@3 evaluation metric.

• Pick Last: The last image is selected as prediction in
this model. We pick last three images in the paper as
top three guesses for ACC@3 evaluation metric.

• Randomly Select: We randomly select an image as
prediction. Three images are randomly selected as the
top 3 guesses for the ACC@3 evaluation metric.

Table I: Performance of baseline models.

Pick First Pick Last Randomly Select
ACC ACC@3 ACC ACC@3 ACC ACC@3
0.258 0.704 0.269 0.679 0.264 0.706

The performance of the baseline models is shown in Table
I. There are 4.68 images in a paper on average in the dataset.
Accuracy of 0.264 from randomly select model makes sense.



D. Image-level Model

Table II: Image accuracy (Equ. 1) of central figure classifi-
cation from image-based models.

Logistic
Regression

Random
Forest

Gradient
Boosting SVM Neural

Networks
0.626 0.616 0.621 0.673 0.684

Table II shows the classification results from each clas-
sifier on identifying central figure. Overall, every classifier
is able to achieve more than 60% accuracy on classifying
between central figure and non-central figure on figure level.
The accuracy of central figure prediction given paper is
shown in Table III. Not surprisingly, this simple image-based
model does not perform well on selecting the central figure
from a list of figures. The model is not able to learn the
structural relationships between figures from the same paper.

E. Paper-level Model

We run an experiment to determine hyperparamter n (the
threshold for the number of figure to be accommodated for
the input V ). The experimental results are shown in Figure
4. The blue line, which corresponds to the y axis on the
left, is the accuracy of the model and the red line shows the
percentage of central figures that were left out because of our
selection of n. The selection of n has insignificant influence
to the model when n is larger than 6 and the maximum
number of figure a paper has in our validation set is 12.
Thus, we pick n = 15 for the rest of the experiments.

Figure 4: Experimental results on hyperparameter n. When
n is larger than 6, selection of n does not affect the accuracy
of the model.

The results for paper-level model with different feature
combinations are shown in Table III. The logistic regression
classifier performs the best among all the models, includ-
ing neural networks. The poor performance from neural
networks is likely due to insufficient data and low dimen-
sional features. The text context has the most predictive
power among the three sets of features, while the visual
figure content has the least. Our interpretation of these
results is that similarity between the figure caption and
paper abstract not only provides the representation of the
image but it also suggests the relationship to the paper.
On the other hand, without any further information of the

paper, figure type is irrelevant to determine central figure
in this generation of the model. Also, surprisingly, the
simple TF-IDF representation produces better performance
than the Elmo word representations in more than half of
the models. We speculate that the terms used in captions,
and the contexts in which they are used are sufficiently
specialized to allow the simpler representation to outperform
pre-learned representations based on a larger corpus of text.
Using max-pool followed by fuzzy Jaccard index to compute
similarity between two documents has superior results over
averaging the word vectors, which agrees with the findings
of Zhelezniak et al. [25]. Considering the difficulty of the
task and the variability of scientific figures, we see our
results as a reasonable start for automatically identifying
central figures.

We investigate the effectiveness of our feature selection.
We replace the similarity between abstract, caption and
inline reference with a text representation vector of the
caption and inline reference. We also experiment with using
image embedding extracted from pre-trained ResNet-50 [20]
instead of categorical feature based on the figure content.
Even though the model was trained on 1M natural images,
we find that the embeddings that capture visual patterns and
colors are sufficiently general to represent the combinations
of edges and shapes that comprise artificial images as
well. The results are presented in Table IV. The experi-
ments demonstrate that using similarity between abstract,
image caption, and inline reference boost the central figure
identification performance and that the categorical label of
image content is more beneficial than image embedding.
Our interpretation is that the high similarity between a
paper’s abstract and a image’s surrounding text does indicate
the centralization of the figure and that the original text
representations and image embeddings are too sparse and
noisy for the model to learn an effective function.

VIII. DISCUSSION

Scholarly communication is moving away from just a sim-
ple PDF. Individual insights, experiments, and conclusions
can be communicated across different media and platforms.
In this paper, we focus on the role that visual information
plays in communicating the key results, models or concepts.
The idea behind a central figure is that it provides an
alternative access point to the content of the paper. In some
papers, it can reveal the key results and conclusions better
than the title, abstract, keywords or authors. Figure 5 shows
two prototypes of how to introduce the central figure in an
image-oriented scientific search interface, viziometrics.org.
As shown in Figure 5(a), the central figure is highlighted
with a star on the search interface. The entry page could
feature the central figure along with textual abstracts as
shown in 5(b). With these two additional features, users are
able to quickly ascertain the overall concept of the article
with the help of central figure at a single glance.



Table III: The results of paper-level model with different classifiers. Surprisingly, logistic regression outperforms random
forest and gradient boosting. Textual content is the most useful feature on recognizing central figure, compared to visual
content and the position feature.

Logistic Regression Random Forest Gradient Boosting SVM Neural Network
Text Visual Layout ACC ACC@3 ACC ACC@3 ACC ACC@3 ACC ACC@3 ACC ACC@3

Figure-level model
TF-IDF v v 0.140 0.691 0.248 0.703 0.126 0.685 0.126 0.690 0.142 0.688

Paper-level model
TF-IDF - - 0.302 0.764 0.318 0.724 0.314 0.760 0.314 0.756 0.311 0.718

- v - 0.289 0.730 0.278 0.693 0.286 0.731 0.319 0.748 0.282 0.724
- - v 0.296 0.757 0.284 0.723 0.284 0.741 0.299 0.746 0.284 0.756

TF-IDF v - 0.317 0.757 0.292 0.712 0.295 0.764 0.322 0.749 0.276 0.716
TF-IDF - v 0.323 0.782 0.277 0.690 0.335 0.765 0.273 0.708 0.280 0.750

- v v 0.312 0.742 0.267 0.703 0.302 0.720 0.300 0.724 0.293 0.739
Elmo-avg v v 0.329 0.771 0.262 0.670 0.314 0.771 0.299 0.729 0.299 0.738

Elmo-DynaMax v v 0.330 0.769 0.285 0.679 0.321 0.778 0.299 0.733 0.282 0.739
TF-IDF v v 0.336 0.779 0.267 0.701 0.314 0.760 0.302 0.727 0.306 0.745

Table IV: Experimental results on using text representation
and image embedding. Sim() indicates the model uses sim-
ilarity between paper’s abstract, image caption, and inline
reference computed by the text representation in the paren-
thesis. Vec() implies the model utilizes the representation
vectors derived from the model in the parenthesis. Label
represents the model includes the categorical label described
in Section V-A as image content feature. We can observe that
using similarity and the categorical label of image content
produces better performance than using representations.

Logistic Regression
Text Visual Layout ACC ACC@3

Sim(TF-IDF) Label v 0.336 0.779
Using Image Embedding from Pre-trained ResNet-50

Sim(TF-IDF) Vec(ResNet) v 0.323 0.761
Using Text Representation Vectors

Vec(TF-IDF) Label v 0.310 0.722
Vec(Elmo-avg) Label v 0.300 0.723
Using Both Text Representation Vectors and Image Embedding
Vec(TF-IDF) Vec(ResNet) v 0.288 0.741

Vec(Elmo-avg) Vec(ResNet) v 0.293 0.705

(a) (b)

Figure 5: Prototype interfaces allow individuals to search
for images from scientific literature with the aid of ”central
figures”. (a) Central figure is starred for easy recognition
on searching interface. (b) Prototype of entry page for each
article. The entry interface of each article could be led with
the central figure along with textual abstract to help the users
understand the articles quickly.

Publishing culture has changed dramatically over the last
few decades due to the introduction of multiple open access
platforms, such as arXiv and PubMed, as well as the signif-
icant increase of scientific publications. With more open ac-
cess platforms available, the accessibility of innovative ideas
pushes the advance of science and allows the community
to share and communicate ideas in different formats. The
presentation of new scientific ideas is no longer restricted
to traditional document copies or digitized pdf formats. For
example, we can easily find comprehensive ablation studies
of the state-of-the-art deep learning models on GitHub.
Google AI 4 hosts a blog to introduce and advertise their
progress on innovative scientific findings and technologies.
Plus, the overwhelming scale of scientific publications [26],
[27] that are published every year. Several recent studies
[1], [4] have explored new measures for the community to
quickly grasp the main messages of the scientific documents.
The scientific publishing enterprise has shifted to be more
open to the public and less restrictive on format, and we
believe the identification and extraction of central figures
can play an important role in the evolution of the scientific
communication. A central figure provides a visual summary
of the key results, objectives, or methods of a paper. It is
adaptable to varying media and platforms, easy to share,
and information-rich. We can see each central figure as
a visual ”nanopublication” [18] and use it to reduce the
redundancy of traditional publications. Every central figure
is a module of condensed ideas and can be transmitted
and shared easily. Therefore, central figures can contribute
greatly in the evolution of scientific communication with
quick idea transferring and flexible publishing platforms.

IX. CONCLUSION
Visualizations will play an increasingly important role in

scholarly communication. The goal of this paper was to
focus on visual objects that convey the central findings of
a research paper. We collected more than eight thousand

4https://ai.googleblog.com/



labeled data for central figure identification from a large-
scale survey. 87.6% of the evaluated papers included a
central figure noted by the authors. This was evidence
that central figures exist and they perform a function in
scholarly communication. We extracted features from the
figure content, surrounding text, and the overall paper layout
as a way of training a figure-level model and a paper-level
model. The results reveal that the paper-level model with all
features produce the best performance overall in identifying
central figures. We achieve top-3 accuracy of 77.9% and
exact match accuracy of 34%. We also demonstrate that
the caption, inline description, and layout shows higher
importance than figure content in this task. Survey data and
code are publicly available 5, and we hope the released data
can attract the community to investigate this problem and
further contribute to the scientific communication.
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